The weak amalgamation property

Wiesław Kubiś

Institute of Mathematics, Czech Academy of Sciences
and
Cardinal Stefan Wyszyński University in Warsaw, Poland

Winter School in Abstract Analysis
Hejnice, 27 January - 3 February 2018

The setup

\mathfrak{K} is a class of finitely generated models.

The setup

\mathfrak{K} is a class of finitely generated models.

$$
\sigma \mathfrak{K}=\left\{\bigcup_{n \in \omega} X_{n}:\left\{X_{n}\right\}_{n \in \omega} \text { is a chain in } \mathfrak{K}\right\} .
$$

The Banach-Mazur game

Definition
The Banach-Mazur game $\operatorname{BM}(\mathfrak{K})$ played on \mathfrak{K} is described as follows.

The Banach-Mazur game

Definition

The Banach-Mazur game BM (\mathfrak{K}) played on \mathfrak{K} is described as follows. There are two players: Eve and Adam. Eve starts by choosing $A_{0} \in \mathfrak{K}$.

The Banach-Mazur game

Definition

The Banach-Mazur game $\mathrm{BM}(\mathfrak{K})$ played on \mathfrak{K} is described as follows. There are two players: Eve and Adam. Eve starts by choosing $A_{0} \in \mathfrak{K}$. Then Adam chooses $A_{1} \in \mathfrak{K}$ together with an embedding $a_{0}^{1}: A_{0} \rightarrow A_{1}$.

The Banach-Mazur game

Definition

The Banach-Mazur game $\mathrm{BM}(\mathfrak{K})$ played on \mathfrak{K} is described as follows. There are two players: Eve and Adam. Eve starts by choosing $A_{0} \in \mathfrak{K}$. Then Adam chooses $A_{1} \in \mathfrak{K}$ together with an embedding $a_{0}^{1}: A_{0} \rightarrow A_{1}$. More generally, after Adam's move finishing with $A_{2 k-1}$, Eve chooses $A_{2 k} \in \mathfrak{K}$ together with an embedding $a_{2 k-1}^{2 k}: A_{2 k-1} \rightarrow A_{2 k}$.

The Banach-Mazur game

Definition

The Banach-Mazur game $\operatorname{BM}(\mathfrak{K})$ played on \mathfrak{K} is described as follows. There are two players: Eve and Adam. Eve starts by choosing $A_{0} \in \mathfrak{K}$. Then Adam chooses $A_{1} \in \mathfrak{K}$ together with an embedding $a_{0}^{1}: A_{0} \rightarrow A_{1}$. More generally, after Adam's move finishing with $A_{2 k-1}$, Eve chooses $A_{2 k} \in \mathfrak{K}$ together with an embedding $a_{2 k-1}^{2 k}: A_{2 k-1} \rightarrow A_{2 k}$. Next, Adam chooses $A_{2 k+1} \in \mathfrak{K}$ together with an embedding $A_{2 k}^{2 k+1}: A_{2 k} \rightarrow A_{2 k+1}$. And so on...

The Banach-Mazur game

Definition

The Banach-Mazur game $\mathrm{BM}(\mathfrak{K})$ played on \mathfrak{K} is described as follows. There are two players: Eve and Adam. Eve starts by choosing $A_{0} \in \mathfrak{K}$. Then Adam chooses $A_{1} \in \mathfrak{K}$ together with an embedding $a_{0}^{1}: A_{0} \rightarrow A_{1}$. More generally, after Adam's move finishing with $A_{2 k-1}$, Eve chooses $A_{2 k} \in \mathfrak{K}$ together with an embedding $a_{2 k-1}^{2 k}: A_{2 k-1} \rightarrow A_{2 k}$. Next, Adam chooses $A_{2 k+1} \in \mathfrak{K}$ together with an embedding $A_{2 k}^{2 k+1}: A_{2 k} \rightarrow A_{2 k+1}$. And so on...
The result of a play is a chain \vec{a} :

$$
A_{0} \xrightarrow{a_{0}^{1}} A_{1} \longrightarrow \cdots \longrightarrow A_{2 k-1} \xrightarrow{a_{2 k-1}^{2 k}} A_{2 k} \longrightarrow \cdots
$$

Generic objects

Generic objects

Definition

We say that $U \in \sigma \mathfrak{K}$ is \mathfrak{K}-generic if Adam has a strategy in the Banach-Mazur game BM (\mathfrak{K}) such that the union of the resulting chain \vec{a} is always isomorphic to U, no matter how Eve plays.

Generic objects

Definition

We say that $U \in \sigma \mathfrak{K}$ is \mathfrak{K}-generic if Adam has a strategy in the Banach-Mazur game $\operatorname{BM}(\mathfrak{K})$ such that the union of the resulting chain \vec{a} is always isomorphic to U, no matter how Eve plays.

Proposition

A \mathfrak{K}-generic object, if exists, is unique up to isomorphism.

Generic objects

Definition

We say that $U \in \sigma \mathfrak{K}$ is \mathfrak{K}-generic if Adam has a strategy in the Banach-Mazur game BM (\mathfrak{K}) such that the union of the resulting chain \vec{a} is always isomorphic to U, no matter how Eve plays.

Proposition

A \mathfrak{K}-generic object, if exists, is unique up to isomorphism.

Proof.

The rules for Eve and Adam are the same.

The amalgamation property

The amalgamation property

Definition

We say that \mathfrak{K} has amalgamations at $Z \in \mathfrak{K}$ if for every embeddings $f: Z \rightarrow X, g: Z \rightarrow Y$ there exist $w \in \mathfrak{K}$ and embeddings $f^{\prime}: X \rightarrow W$, $g^{\prime}: Y \rightarrow W$ such that $f^{\prime} \circ f=g^{\prime} \circ g$.

The amalgamation property

Definition

We say that \mathfrak{K} has amalgamations at $Z \in \mathfrak{K}$ if for every embeddings $f: Z \rightarrow X, g: Z \rightarrow Y$ there exist $w \in \mathfrak{K}$ and embeddings $f^{\prime}: X \rightarrow W$, $g^{\prime}: Y \rightarrow W$ such that $f^{\prime} \circ f=g^{\prime} \circ g$.

We say that \mathfrak{K} has the amalgamation property (AP) if it has amalgamations at every $Z \in \mathfrak{K}$.

Definition

The class \mathfrak{K} is directed if for every $X, Y \in \mathfrak{K}$ there is $V \in \mathfrak{K}$ such that both X and Y embed into V.

Definition

The class \mathfrak{K} is directed if for every $X, Y \in \mathfrak{K}$ there is $V \in \mathfrak{K}$ such that both X and Y embed into V.

Weakenings of amalgamation

Weakenings of amalgamation

Definition

We say that \mathfrak{K} has the cofinal amalgamation property (CAP) if for every $Z \in \mathfrak{K}$ there is an embedding $e: Z \rightarrow Z^{\prime}$ such that \mathfrak{K} has amalgamations at Z^{\prime}.

Weakenings of amalgamation

Definition

We say that \mathfrak{K} has the cofinal amalgamation property (CAP) if for every $Z \in \mathfrak{K}$ there is an embedding $e: Z \rightarrow Z^{\prime}$ such that \mathfrak{K} has amalgamations at Z^{\prime}.

Definition (Ivanov, 1999)
We say that \mathfrak{r} has the weak amalgamation property (WAP) if for every $Z \in \mathfrak{K}$ there is an embedding $e: Z \rightarrow Z^{\prime}$ with $Z^{\prime} \in \mathfrak{K}$, such that for every embeddings $f: Z^{\prime} \rightarrow X, g: Z^{\prime} \rightarrow Y$ there exist embeddings $f^{\prime}: X \rightarrow W, g^{\prime}: Y \rightarrow W$ such that $f^{\prime} \circ f \circ e=g^{\prime} \circ g \circ e$.

CAP and WAP

CAP and WAP

Proposition

Finite graphs of vertex degree $\leqslant 2$ have the CAP.

Main results

Theorem (Krawczyk \& K. 2016)
Let \mathfrak{K} be a countable directed category of finitely generated models.
The following conditions are equivalent:
(a) There exists a \mathfrak{K}-generic model.
(b) \mathfrak{K} has the WAP.

Main results

Theorem (Krawczyk \& K. 2016)
Let \mathfrak{K} be a countable directed category of finitely generated models.
The following conditions are equivalent:
(a) There exists a $\mathfrak{\mathfrak { K }}$-generic model.
(b) \mathfrak{K} has the WAP.

Theorem (Krawczyk \& K. 2016)
Let \mathfrak{K} be as above and let $U \in \sigma \mathfrak{K}$. The following properties are equivalent:
(a) U is \mathfrak{K}-generic.
(b) Eve does not have a winning strategy in $\mathrm{BM}(\mathfrak{K}, \mathrm{U})$.

Examples...

A. Krawczyk, W. Kubiś, Games on finitely generated structures, preprint, arXiv:1701.05756

囲 A. Krawczyk, A. Kruckman, W. Kubiś, A. Panagiotopoulos, Examples of weak amalgamation classes, preprint

囦 W. Kubiś, Weak Fraïssé categories, preprint, arXiv:1712.03300

